martes, 11 de agosto de 2009

LA IMPORTANCIA DE LA RESOLUCIÓN DE PROBLEMAS

Resolver un problema es encontrar un camino allí donde no se conocía previamente camino alguno, encontrar la forma de salir de una dificultad, de sortear un obstáculo, conseguir el fin deseado, que no se consigue do forma inmediata, utilizando los medios adecuados.
George Polya
Lo que se puede enseñar es la actitud correcta ante los problemas, y enseñar a resolver problemas es el camino para resolverlos (...). El mejor método no es contarles cosas a los alumnos, sino preguntárselas y, mejor todavía, instarles a que se pregunten ellos mismos.
P. Halmos
La resolución de problemas es una cuestión de gran importancia para el avance de las matemáticas y también para su comprensión y aprendizaje.
El saber hacer, en matemáticas, tiene mucho que ver con la habilidad de resolver problemas, de encontrar pruebas, de criticar argumentos, de usar el lenguaje matemático con cierta fluidez, de reconocer conceptos matemáticos en situaciones concretas, de saber aguantar una determinada dosis de ansiedad, ...pero también de estar dispuesto a disfrutar con el camino emprendido. Lo importante no es obtener la solución, sino el camino que lleva hacia ella. La habilidad para resolver problemas es una de las habilidades básicas que los estudiantes deben tener a lo largo de sus vidas, y deben usarla frecuentemente cuando dejen la escuela. Es una habilidad que se puede enseñar.
La resolución de problemas es una actividad primordial en la clase de matemáticas, no es únicamente un objetivo general a conseguir sino que además es un instrumento pedagógico de primer orden.
Un problema matemático es una situación que supone alcanzar una meta, hay obstáculos en el camino, se requiere deliberación, y se parte de un desconocimiento algorítmico.
En términos generales, para afrontar la resolución de problemas hemos de tener en cuenta:
a) Existencia de un interés. Lo que significa enfrentarnos a problemas con un cierto atractivo.
b) La no existencia de un camino inmediato.
c) Tener deseos de resolver el problema. Significa estar dispuestos a aceptar el reto.
En definitiva, aprender a resolver problemas, y aceptar que con frecuencia hay más de una respuesta a una pregunta y más de una forma de tratarla, constituye una parte fundamental tanto en la educación como en el proceso de aprendizaje de las matemáticas.
Las ventajas del enfoque basado en la resolución de problemas en cuanto al proceso de enseñanza y aprendizaje son significativas por diversas razones:
i) Los alumnos tienen la posibilidad de pensar las cuestiones con detenimiento, hacer pruebas, equivocarse, "perder el tiempo" investigando...
ii) Existe una mayor participación y un mayor grado de comprensión por parte del alumnado.
iii) Es un tipo de conocimiento basado en la experiencia (es decir, el conocimiento obtenido mediante la experiencia de hacer algo), siendo más duradero y significativo para el alumno que el conocimiento transmitido por el profesor o el libro.
iv) Los alumnos se ven inmersos en la construcción de sus propios sistemas individuales de aprendizaje y de comprensión.
v) Incide directamente en el llamado aspecto formativo, creando así estructuras mentales que trascienden a las propias matemáticas.
vi) La resolución de problemas es el núcleo central de las matemáticas, hacer matemáticas no es otra cosa que resolver problemas.
vii) Hay que tener presente que el único camino que existe para aprender a resolver problemas, es enfrentarse a los problemas


PROBLEMAS PARA RESOLVER:


1) EL PROBLEMA DEL CORREDOR


Un corredor de larga distancia calculó que si hacía 10km/h, llegaría al sitio designado, una hora después del mediodía, mientras que si la velocidad era de 15km/h, llegaría una hora antes del mediodía. ¿A qué velocidad debe correr para llegar al sitio exactamente al mediodía


2) EL RPOBLEMAS DL REPARTO

¿De cuántas formas se pueden distribuir 4 bolas negras, 4 bolas blancas y 4 bolas azules(se supone que las bolas de un mismo color no se pueden distinguir entre sí) en 6 paquetes diferentes , sabiendo que algunos paquetes pueden estar vacíos?


3) EL PROBLEMAS DE LOS COEFICIENTES
Los coeficientes a y b de la ecuación de segundo grado
Se toman aleatoriamente en el intervalo (0,2) ¿ cuál es la probabilidad de que las raíces de esta ecuación sean números reales?



4) EL PROBLEMA DL TRIÁNGULO

Sea ABC un triángulo y sean Q en BA, R en CB de tal forma que: BQ = CR = AC.Sea L una línea paralela a AC y que pasa por R y denotemos por T a la intersección de ésta con CQ. Sea L’ una línea paralela a BC que pase por T y denotemos por S a la intersección de L’ con AC. Probar que (AC)^3 = (AQ)(BC)(CS).

1 comentario:

  1. Muy interesantes todos los artículos. Siempre seguí tu blog porque también soy profesora de matemática. Felicitaciones, espero que lo continúes

    ResponderEliminar

TE INVITO A QUE REALICES UN COMENTARIO